Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats.
نویسندگان
چکیده
Glial cell dysfunction and excessive glutamate receptor activation in spinal dorsal horn neurons are hallmark mechanisms of pathological pain. The way in which glial cell dysfunction leads to excessive glutamate receptor activation in the spinal sensory synapses remains unknown. We and others recently reported the downregulation of glial glutamate transporter (GT) protein expression in the spinal dorsal horn of neuropathic rats. In this study, we showed that excitatory postsynaptic currents originating from N-methyl-d-aspartate receptor activation (NMDA EPSCs) elicited by peripheral synaptic input in the spinal sensory synapses were enhanced in neuropathic rats with mechanical allodynia induced by partial sciatic nerve ligation. The enhanced NMDA EPSCs were accompanied by an increased proportion of NR2B receptor activation. Physically blocking the extrasynaptic glutamate with dextran or chemically scavenging the glutamate with glutamic-pyruvic transaminase ameliorated the abnormal NMDA EPSCs in neuropathic rats. Pharmacological blockade of glial GTs with dihydrokainic acid enhanced NMDA receptor activation elicited by synaptic input or puffed glutamate in normal control rats, but this effect was precluded in neuropathic rats. Thus extrasynaptic glutamate spillover and extrasynaptic NMDA receptor activation induced by deficient glial glutamate uptake in the synapses resulted in the excessive activation of NMDA receptors in neuropathic rats. It is suggested that extrasynaptic glutamate spillover may be a key synaptic mechanism related to phenotypic alterations induced by nerve injury in the spinal dorsal horn and that glial GTs are potential new targets in the development of analgesics.
منابع مشابه
Sensory Synapses of Neuropathic Rats
Impaired Glial Glutamate Uptake Induces Extrasynaptic Glutamate Spillover in the Spinal 1 Sensory Synapses of Neuropathic Rats 2 3 Abbreviated title: role of glial glutamate transporters in neuropathic pain 4 5 Hui Nie and Han-Rong Weng* 6 7 Department of Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, 8 Texas 77030 9 10 *Correspondence should be addressed to Han-R...
متن کاملGlutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn neurons is a key process related to sensory transmission, neural plasticity, and pathogenesis of pain. In this study, we investigated how activation of NMDA receptors in spinal substantia gelatinosa neurons is regulated by glutamate re-uptake through glutamate transporters located in the astrocytic and neuronal plasma...
متن کاملBidirectional neuron-glia interactions triggered by deficiency of glutamate uptake at spinal sensory synapses.
Bidirectional interactions between neurons and glial cells are crucial to the genesis of pathological pain. The mechanisms regulating these interactions and the role of this process in relaying synaptic input in the spinal dorsal horn remain to be established. We studied the role of glutamate transporters in the regulation of such interactions. On pharmacological blockade of glutamate transport...
متن کاملSynaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse.
Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly u...
متن کاملGlutamate transporter dysfunction associated with nerve injury-induced pain in mice.
Dysfunction at glutamatergic synapses has been proposed as a mechanism in the development of neuropathic pain. Here we sought to determine whether peripheral nerve injury-induced neuropathic pain results in functional changes to primary afferent synapses. Signs of neuropathic pain as well as an induction of glial fibrillary acidic protein in immunostained spinal cord sections 4 days after parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 5 شماره
صفحات -
تاریخ انتشار 2010